Categories

A sample text widget

Etiam pulvinar consectetur dolor sed malesuada. Ut convallis euismod dolor nec pretium. Nunc ut tristique massa.

Nam sodales mi vitae dolor ullamcorper et vulputate enim accumsan. Morbi orci magna, tincidunt vitae molestie nec, molestie at mi. Nulla nulla lorem, suscipit in posuere in, interdum non magna.

The impact of the nuclear crisis on global health

Helen Caldicott l Australian Medical Student Journal Volume 4, Issue 2 2014

Due to my personal concerns regarding the ignorance of the world’s media and politicians about radiation biology after the dreadful accident at Fukushima in Japan, I organized a 2 day symposium at the NY Academy of Medicine on March 11 and 12, 2013, titled ‘The Medical and Ecological Consequences of Fukushima,’ which was addressed by some of the world’s leading scientists, epidemiologists, physicists and physicians who presented their latest data and findings on Fukushima. [1]

Background

The Great Eastern earthquake, measuring 9.0 on the Richter scale, and the ensuing massive tsunami on the east coast of Japan induced the meltdown of three nuclear reactors within several days. During the quake the external power supply was lost to the reactor complex and the pumps, which circulate up to one million gallons of water per minute to cool each reactor core, ceased to function. Emergency diesel generators situated below the plants kicked in but these were soon swamped by the tsunami. Without cooling, the radioactive cores in units 1, 2 and 3 began to melt within hours. Over the next few days, all three cores (each weighing more than 100 tonnes) melted their way through six inches of steel at the bottom of their reactor vessels and oozed their way onto the concrete floor of the containment buildings. At the same time the zirconium cladding covering thousands of uranium fuel rods reacted with water, creating hydrogen, which initiated hydrogen explosions in units 1, 2, 3 and 4.

Massive quantities of radiation escaped into the air and water – three times more noble gases (argon, xenon and krypton) than were released at Chernobyl, together with huge amounts of other volatile and non-volatile radioactive elements, including cesium, tritium, iodine, strontium, silver, plutonium, americium and rubinium. Eventually sea water was – and is still – utilized to cool the molten reactors.

Fukushima is now described as the greatest industrial accident in history.
Helen Caldicott l Australian Medical Student Journal Volume 4, Issue 2 2014

Due to my personal concerns regarding the ignorance of the world’s media and politicians about radiation biology after the dreadful accident at Fukushima in Japan, I organized a 2 day symposium at the NY Academy of Medicine on March 11 and 12, 2013, titled ‘The Medical and Ecological Consequences of Fukushima,’ which was addressed by some of the world’s leading scientists, epidemiologists, physicists and physicians who presented their latest data and findings on Fukushima. [1]

Background

The Great Eastern earthquake, measuring 9.0 on the Richter scale, and the ensuing massive tsunami on the east coast of Japan induced the meltdown of three nuclear reactors within several days. During the quake the external power supply was lost to the reactor complex and the pumps, which circulate up to one million gallons of water per minute to cool each reactor core, ceased to function. Emergency diesel generators situated below the plants kicked in but these were soon swamped by the tsunami. Without cooling, the radioactive cores in units 1, 2 and 3 began to melt within hours. Over the next few days, all three cores (each weighing more than 100 tonnes) melted their way through six inches of steel at the bottom of their reactor vessels and oozed their way onto the concrete floor of the containment buildings. At the same time the zirconium cladding covering thousands of uranium fuel rods reacted with water, creating hydrogen, which initiated hydrogen explosions in units 1, 2, 3 and 4.

Massive quantities of radiation escaped into the air and water – three times more noble gases (argon, xenon and krypton) than were released at Chernobyl, together with huge amounts of other volatile and non-volatile radioactive elements, including cesium, tritium, iodine, strontium, silver, plutonium, americium and rubinium. Eventually sea water was – and is still – utilized to cool the molten reactors.

Fukushima is now described as the greatest industrial accident in history
More nuclearfreeplanet.org

Share

Leave a Reply