Categories

A sample text widget

Etiam pulvinar consectetur dolor sed malesuada. Ut convallis euismod dolor nec pretium. Nunc ut tristique massa.

Nam sodales mi vitae dolor ullamcorper et vulputate enim accumsan. Morbi orci magna, tincidunt vitae molestie nec, molestie at mi. Nulla nulla lorem, suscipit in posuere in, interdum non magna.

Nickel Foam, Nanotechnology Enable Lightweight Lithium Batteries

A nanotechnology-based electrode that resists deformation and electric polarization may one day boost the driving range of electric and hybrid vehicles. (Credit: Flickr @ Glen Wallace http://www.flickr.com/photos/inverness_trucker/)
Zhaolin Liu from the A*STAR Institute of Materials Research and Engineering in Singapore, in collaboration with Aishui Yu and co-workers from Fudan University in China, has developed a carbon nanotube electrode that can alleviate recharging problems in lithium-oxygen batteries, thanks to a support made from three-dimensional nickel foam.

Lithium-oxygen batteries are innovative devices that generate power from atmospheric oxygen trapped inside porous, carbon-based electrodes. However, many practical challenges remain for lithium-oxygen batteries, most notable of which is the buildup of insoluble lithium peroxide by-products in the carbon electrode, which can cause the battery to cease operation after only a few charge cycles.

In previous efforts to improve the performance of lithium-oxygen batteries, researchers investigated numerous types of permeable carbon electrodes—including high-surface-area charcoal, graphene and porous aerogels. Such approaches, however, rely on glue-like binders to hold the carbon particles together. These binders decrease oxygen diffusion rates through the electrode and can degrade and clog pore spaces.

Liu and co-workers set out to design a binder-free electrode by turning to nickel foam, an inexpensive substance with a porous three-dimensional structure that makes it both rigid and lightweight. To ensure the foam’s compatibility with lithium-oxygen batteries, the team grew carbon nanotubes doped with small amounts of nitrogen directly on its surface. Nitrogen-doped carbon-nanotube electrodes have been shown to possess catalytic activity that boosts battery lifetimes, and the team anticipated that they could create improved devices by supporting these nanomaterials with nickel foam.

More dailyfusion.net

Share

Leave a Reply