A sample text widget

Etiam pulvinar consectetur dolor sed malesuada. Ut convallis euismod dolor nec pretium. Nunc ut tristique massa.

Nam sodales mi vitae dolor ullamcorper et vulputate enim accumsan. Morbi orci magna, tincidunt vitae molestie nec, molestie at mi. Nulla nulla lorem, suscipit in posuere in, interdum non magna.

New quantum dot nanomaterials to boost solar energy harvesting | SPIE Newsroom: SPIE

Fossil fuels are the most highly used sources for energy generation. But as energy needs increase day by day, and fossil fuels are consumed at ever faster rates, there is a great need for alternative energy sources. Renewable sources such as wind and solar can be exploited in a wide range of geographical areas and could effectively replace fossil fuels. For example, the Earth receives over 8 million quads of BTU (British thermal units) annually, meaning that there is enough solar energy available to fulfill all the energy requirements of the human race. However, due to the low efficiencies with which current solar cell technologies convert light into electricity, only a small fraction of the available solar energy can be harnessed. Deployment of solar cells will increase if their efficiency can be improved without increasing their cost. A novel concept known as the intermediate band solar cell (IBSC) paves the way for increasing solar cell efficiency.1 In an IBSC, sub-bandgap photons that would be wasted in a conventional solar cell can be harvested effectively to create a higher photocurrent.

Semiconductor quantum dots (QDs) are perhaps the best choice to create an intermediate band in a single-junction solar cell due to the inherent tunability of their shape, size, and quantum confinement properties. For an IBSC to work, the QD system being used must satisfy certain conditions in terms of bandgaps and band alignments. For maximum efficiency, the QD and host material bandgaps should be 0.7 and 1.93eV, respectively.



Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.