A sample text widget

Etiam pulvinar consectetur dolor sed malesuada. Ut convallis euismod dolor nec pretium. Nunc ut tristique massa.

Nam sodales mi vitae dolor ullamcorper et vulputate enim accumsan. Morbi orci magna, tincidunt vitae molestie nec, molestie at mi. Nulla nulla lorem, suscipit in posuere in, interdum non magna.

Engineers find new possibilities for Li-ion batteries by taking a “deeper” look

Engineers have been working tirelessly to make batteries cheaper, more robust and hold more energy. Li-ion batteries have been the top choice in recent years, but they are reaching the limits of their current design. A key factor which confines Li-based battery performance is dendrite formation. New research, however, indicates current understanding is only “scratching the surface.”

Li-ion batteries could hold more charge if their anodes were made from lithium instead of graphite. This is not currently feasible due to dendrite growth. As the battery is cycled (charged and discharged), microscopic pillars (dendrites) of lithium extend out from the surface and across the electrolyte causing a short-circuit, overheating and potentially a fire.

As described in Materials Views, researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have discovered early dendrite formation is a subsurface phenomenon.

Unexpectedly, the dendrites did not protrude from the surface until the advanced stages of development. Balsara exaplins, “Contrary to conventional wisdom, it seems that preventing dendrite formation in polymer electrolytes depends on inhibiting the formation of subsurface dendritic structures in the lithium electrode.”

This finding indicates the limitation to lithium anodes may be overcome through addressing the nucleation rather than growth of dendrites.


Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.