Categories

A sample text widget

Etiam pulvinar consectetur dolor sed malesuada. Ut convallis euismod dolor nec pretium. Nunc ut tristique massa.

Nam sodales mi vitae dolor ullamcorper et vulputate enim accumsan. Morbi orci magna, tincidunt vitae molestie nec, molestie at mi. Nulla nulla lorem, suscipit in posuere in, interdum non magna.

Why lithium-ion-batteries fail

Materials in lithium ion battery electrodes expand and contract during charge and discharge. These volume changes drive particle fracture, which shortens battery lifetime. A group of ETH and PSI scientists have quantified this effect for the first time using high-resolution 3D movies recorded using x-ray tomography at the Swiss Light Source.

Lithium-ion batteries are in our mobile phones, laptops, and digital cameras. Few portable electronic devices exist that do not rely on these energy sources. Currently battery electrodes contain active materials known as intercalation compounds. These materials store charge in their chemical structure without undergoing substantial structural change. That makes these batteries comparatively long-lived and safe. However, intercalation materials have one drawback: their limited energy density, the amount of energy they can store per volume and mass.

In the search for higher energy density batteries, scientists have experimented for more than 20 years with materials capable of repetitively alloying and de-alloying with lithium. Laboratory-scale experiments have shown that batteries with such materials have energy densities multiple times that of intercalation materials; however, these alloying materials are not yet exploited in industry because their lifetime is limited. Martin Ebner, Ph.D. student at the Laboratory for Nanoelectronics in the Department of Information Technology and Electrical Engineering (D-ITET) explains: “Their capacity typically fades after a couple of charging and discharging cycles.” This is attributed to a massive – up to threefold – expansion of the electrode material during charging. During discharge, the materials contract again, but do not reach their original state. Electrode particles break apart, the electrode structure disintegrates, and the fragments loose contact to the rest of the cell.
Batteries x-rayed during operation

To better understand this complex electrochemical and mechanical degradation of the electrode and to gain insight into how to develop better batteries, Martin Ebner and ETH-Professor Vanessa Wood, head of the Laboratory for Nanoelectronics at D-ITET, recognized the need to study a battery electrode non-invasively during operation. To do so, they turned to an imaging tool developed by ETH-Professor Marco Stampanoni who holds a faculty position at the Institute for Biomedical Engineering at D-ITET, Furthermore, he runs the tomographic x-ray microscopy beamline at the Swiss Light Source, the synchrotron facility at the Paul Scherrer Institute. The spectrally pure and intense synchrotron x-ray radiation enables the fast acquisition of high-resolution x-ray images that can be computationally assembled into three-dimensional movies.

The researchers observed the inside of the battery as it charged and discharged over 15 hours. They gathered unique, three-dimensional movies that capture the degradation mechanisms occurring in the battery and quantified the processes occurring within every particle for the thousands of particles in the electrode. The results of this study will be published in the journal Science; a pre-print version is available online at Science Express.
Irreversible structural changes

The data illustrate that tin oxide (SnO) particles expand during charging due to the influx of lithium ions causing an increase in particle volume. The scientists demonstrate that material lithiation happens as a core-shell process, progressing uniformly from the particle surface to the core. The material undergoing this reaction expands linearly with the stored charge. The x-ray images show that charging destroys the particle structure irreversibly with cracks forming within the particles. “This crack-formation is not random,” emphasizes Ebner. Cracks grow at locations where the crystal lattice contains pre-existing defects. During discharge, the particle volume decreases; however, the material does not reach its original state again; the process is therefore not completely reversible.
More yottafire.com

Share

Leave a Reply