A sample text widget

Etiam pulvinar consectetur dolor sed malesuada. Ut convallis euismod dolor nec pretium. Nunc ut tristique massa.

Nam sodales mi vitae dolor ullamcorper et vulputate enim accumsan. Morbi orci magna, tincidunt vitae molestie nec, molestie at mi. Nulla nulla lorem, suscipit in posuere in, interdum non magna.

Quest for Next Generation of Lithium Batteries

The creation of the next generation of batteries depends on finding materials that provide greater storage capacity. One variety, known as lithium-air (Li-air) batteries, is particularly appealing to researchers because they have a significantly higher theoretical capacity than conventional lithium-ion batteries.

Li-air battery development is still in its infancy, however, and like most new technologies, it faces many challenges. One of these challenges involves the transfer of charge to the anode, which along with the cathode and electrolyte, is one of the three principal components of a battery.

In a new study, electrochemist Di-Jia (D.J.) Liu and his colleagues at the U.S. Department of Energy’s Argonne National Laboratory studied anode behavior inside lithium-air batteries during the battery’s cycling.

By using high-energy, focused X-ray beams provided by Argonne’s Advanced Photon Source (APS), Liu and his team were able to non-destructively peer inside an operating battery to study the changes in the anode microstructure. They saw the formation of a thin solid coating of lithium hydroxide (LiOH), which continued to grow at the expense of lithium metal until the metal was totally converted to hydroxide and shut down the operation.

“This was the kind of question that everyone wanted to know but was afraid or didn’t know how to ask,” Liu said. “Nearly all the literature on Li-air batteries so far focused on the chemical processes at cathode while assuming the anode is completely reversible. But now we know that this is not the case.”


Leave a Reply