A sample text widget

Etiam pulvinar consectetur dolor sed malesuada. Ut convallis euismod dolor nec pretium. Nunc ut tristique massa.

Nam sodales mi vitae dolor ullamcorper et vulputate enim accumsan. Morbi orci magna, tincidunt vitae molestie nec, molestie at mi. Nulla nulla lorem, suscipit in posuere in, interdum non magna.

Boeing’s 787 Dreamliner uses the most flammable battery on the market

Boeing chose to use the most combustible of the standard lithium-ion chemistries on the market in its flagship 787 Dreamliner. The advanced aircraft is grounded around the world after a battery burst into flames.

The suspension of all 50 working Dreamliners follows a Jan. 16 emergency landing by an All Nippon Airways pilot after he smelled something burning, and saw a cockpit warning light up indicating a battery problem. It turned out that one of the plane’s batteries had caught fire. Investigators are working to determine why—faulty wiring, design, system assembly, or the battery itself.

Boeing, for whom the Dreamliner is key to the company’s growth plans, has been the target of scrutiny because of a long series of failures in the aircraft. Now the glare is focused on its lithium ion batteries. But blaming this type of battery for the fault would be like scorning all automobiles because of the Ford Pinto. In fact, lithium ion batteries are not all the same.

Experts note that Boeing chose to rely on a lithium cobalt oxide battery configuration for the 787, a chemistry that, while delivering powerful performance, has in the past been responsible for fires (paywall) in laptop computers and cellphones. The 787 battery is manufactured by Japan’s GS Yuasa, one of the most respected lithium-ion battery-makers in the

In its hybrid-electric Volt car, for example, GM chose to use a battery combining lithium with two ion chemistries—nickel manganese cobalt, and manganese spinel. China’s BYD uses yet a third chemistry: lithium iron phosphate. What all three have in common, experts say, is that they are far less flammable than lithium cobalt oxide. “It’s essentially due to the crystalline structure,” Shu Sun, an analyst with Bloomberg New Energy Finance, told me in an email exchange. “The olivine and spinal structure of [lithium iron phosphate and manganese spinel] make them safer.”

All five experts interviewed for this post also emphasized that, while the chemistry is important, safety comes as well in the design of the battery system and the electronics installed to govern its use. “I suspect the real problem lies in the cell assembly by [GS Yuasa] and, perhaps more important, the control circuitry design,” said Ralph Brodd, one of the world’s most respected battery experts.
More qa.xom


Leave a Reply