Categories

A sample text widget

Etiam pulvinar consectetur dolor sed malesuada. Ut convallis euismod dolor nec pretium. Nunc ut tristique massa.

Nam sodales mi vitae dolor ullamcorper et vulputate enim accumsan. Morbi orci magna, tincidunt vitae molestie nec, molestie at mi. Nulla nulla lorem, suscipit in posuere in, interdum non magna.

Air Force support for a new generation of lithium-ion batteries

New graphene technique can significantly increase the storage capacity of lithium ion by combining graphene nanoribbons with tin oxide

A few months back, the Air Force Office of Scientific Research (AFOSR) was proud to publish an article regarding a research accomplishment by Dr. Jim Tour and his research team at Rice University. AFOSR, along with other funding agencies, supported Dr. Tour’s research effort to make graphene suitable for a variety of organic chemistry applications — especially the promise of advanced chemical sensors, nanoscale electronic circuits and metamaterials.

Four years ago, Tour’s research team demonstrated that they could chemically unzip cylindrical shaped carbon nanotubes into soluble graphene nanoribbons (GNR) without compromising the electronic properties of the graphitic structure. A recent paper by the Tour team, published in IEEE Spectrum and partially funded by AFOSR, showed that GNR can significantly increase the storage capacity of lithium ion (Li-ion) by combining graphene nanoribbons with tin oxide.

By producing GNR in bulk, a necessary requirement for making this a viable process, the Tour team mixes GNR and 10 nanometer wide particles of tin oxide to create a slurry. By adding a cellulose gum binding agent and water, the mixture is then applied to a capacitor, which is then fitted to a button-style lithium-ion battery.
More eurekalert.org

Share

Leave a Reply