A sample text widget

Etiam pulvinar consectetur dolor sed malesuada. Ut convallis euismod dolor nec pretium. Nunc ut tristique massa.

Nam sodales mi vitae dolor ullamcorper et vulputate enim accumsan. Morbi orci magna, tincidunt vitae molestie nec, molestie at mi. Nulla nulla lorem, suscipit in posuere in, interdum non magna.

Battery Could Provide a Cheap Way to Store Solar Power

Combining aspects of high-energy lithium-sulfur batteries with flow battery technology can lower costs.

There’s a promising new entry in the race to build cheap batteries for storing energy from solar panels and wind turbines. Stanford researchers led by Yi Cui, a professor of materials science and engineering, have demonstrated a partially liquid battery made of inexpensive lithium and sulfur. Cui says the battery will be easy to make and will last for thousands of charging cycles.

Cui believes that the material and manufacturing costs of the battery might be low enough to meet the Department of Energy’s goal of $100 per kilowatt-hour of storage capacity, which the DOE estimates will make the technology economically attractive to utilities. Existing batteries can cost hundreds of dollars per kilowatt-hour of capacity, although several companies are working to commercialize cheaper ones (see “Ambri’s Better Battery” and “Battery to Take On Diesel and Natural Gas”).

The technology is a cross between a flow battery and an experimental type called a lithium-sulfur battery. In a flow battery, positive and negative liquid electrolytes are stored in swimming-pool-size tanks. The batteries are attractive because the amount of energy they store can be increased simply by expanding these tanks, without increasing the size of the electronic connections and other battery parts needed to extract the energy. But they require expensive ion membranes and large amounts of material.

Lithium-sulfur batteries, meanwhile, consist of two solid electrodes connected by a liquid electrolyte. They have the potential to store large amounts of energy, but they’ve been hard to commercialize because they can’t be recharged often enough. The problem is that compounds called lithium polysulfides, which form during the charging and discharging process, tend to dissolve in the electrolyte, leaving the lithium and sulfur inaccessible for future charging cycles. With each recharge, more energy capacity is lost, limiting the life of these batteries.


Leave a Reply