Categories

Archives

A sample text widget

Etiam pulvinar consectetur dolor sed malesuada. Ut convallis euismod dolor nec pretium. Nunc ut tristique massa.

Nam sodales mi vitae dolor ullamcorper et vulputate enim accumsan. Morbi orci magna, tincidunt vitae molestie nec, molestie at mi. Nulla nulla lorem, suscipit in posuere in, interdum non magna.

The self-improvement of lithium-ion batteries

(Nanowerk News) The search for clean and green energy in the 21st century requires a better and more efficient battery technology. The key to attaining that goal may lie in designing and building batteries not from the top down, but from the bottom up — beginning at the nanoscale. A team of researchers from Argonne National Laboratory and the University of Chicago has taken such an approach by developing titanium dioxide (TiO2) electrodes that can actually improve their own electrochemical performance as they are used.
The experimenters synthesized TiO2 nanotubes and assembled them into Li-ion coin cells, then cycled them galvanostatically between 0.8 V and 2.0 V. Electrode samples from the cells were then examined using x-ray diffraction (XRD) at the GeoSoilEnvirioCARS 13-ID-D insertion device beamline and x-ray absorption spectroscopy (XAS) at the X-ray Science Division 20-BM bending magnet beamline, both at the U.S. Department of Energy’s Advanced Photon Source at Argonne.
Amorphous titanium oxide nanotubes, upon lithium insertion in a Li-ion battery, self-create the highest capacity cubic lithium titanium oxide structure
Amorphous titanium oxide nanotubes, upon lithium insertion in a Li-ion battery, self-create the highest capacity cubic lithium titanium oxide structure.
In addition to the synthesis of the TiO2 nanotubes, scanning electron microscopy imaging and molecular dynamics simulations also were performed at the Argonne Center for Nanoscale Materials. All these techniques provided a window into the inclusion and removal of ions (intercalation/deintercalation process) occurring within the TiO2 nanotubes.

Read more: http://www.nanowerk.com/news2/newsid=27809.php#ixzz2E3sBYJ4f
Follow us: @nanowerk on Twitter | nanowerk on Facebook
More nanowerk.com

Share

Leave a Reply