A sample text widget

Etiam pulvinar consectetur dolor sed malesuada. Ut convallis euismod dolor nec pretium. Nunc ut tristique massa.

Nam sodales mi vitae dolor ullamcorper et vulputate enim accumsan. Morbi orci magna, tincidunt vitae molestie nec, molestie at mi. Nulla nulla lorem, suscipit in posuere in, interdum non magna.

OXIS Wins Funding and Contracts for Lithium Sulfur Batteries

A polymer version of the potent but historically troubled lithium-sulfur chemistry
Doug Widney: December 10, 2012

In September, U.K.-based polymer lithium-sulfur battery developer OXIS Energy closed a $24 million funding round from South African investor Sasol New Energy, followed in November by a contract from the British Ministry of Defence. The developments at OXIS highlight a year of encouraging activity for lithium-sulfur battery (LSB) technology.

OXIS Energy was founded in 2004 in Oxford, U.K. The company states it has been granted 27 patents, with 32 additional pending. The CEO is Huw W. Hampson-Jones. There are significant Russian technical roots via CTO Vladimir Kolosnitsyn.

The lithium-sulfur battery theoretically has up to five times the storage density of lithium-ion (in practice maybe triple), along with good safety and deep-discharge behavior. However, persistent problems, especially with cycle life, have been a challenge to commercialization. Critical reactants are permanently lost due to solubility reactions, when they pass through a polysulfide stage during cycling. Early cells had a cycle life in the single digits, although recent versions have done much better (vehicle applications require several thousand cycles).

A year of lithium-sulfur activity

In October 2011, the U.S. Department of Energy awarded $5 million to a consortium headed by Penn State and Johnson Controls, for LSB research.
In January 2012, long-term (17-year) lithium-sulfur stalwart Sion Power announced a $50 million equity investment from BASF.
In March 2012, Stanford Linear Accelerator Center (SLAC) researcher Dr. Johanna Nelson published a breakthrough study on polysulfide loss. A powerful x-ray system was able to image the battery during cycling, radically modifying previous hypotheses. (For a readable account, see here.) The study bears, among other names, that of Dr. Yi Cui, a respected battery theorist.
Also in March 2012, a LMU Munich/University of Waterloo team published results of an LSB study using a mesoporous carbon cathode. Performance was dramatically enhanced on several parameters, leading to a nominal 1200 watt-hours per kilogram, as well as further improvement in problem areas.


Leave a Reply