Categories

Archives

A sample text widget

Etiam pulvinar consectetur dolor sed malesuada. Ut convallis euismod dolor nec pretium. Nunc ut tristique massa.

Nam sodales mi vitae dolor ullamcorper et vulputate enim accumsan. Morbi orci magna, tincidunt vitae molestie nec, molestie at mi. Nulla nulla lorem, suscipit in posuere in, interdum non magna.

Smartphone Battery Life Could Be Doubled Or Tripled With Silicon Graphene Tech

Having trouble staying charged? The battery life of your smartphone could soon be extended by twice as long, ideally three times, using new lithium ion battery technology developed by researchers at Illinois institutes Northwestern University and Argonne National Laboratory.

“Doubling [battery life of smartphones] would be quite easy, three times would be a good number to shoot for,” said Harold Kung, a chemical and biological engineering professor at Northwestern and the lead author of a paper describing the breakthrough battery tech, published in the journal Advanced Energy Materials in October 2011. Northwestern is one of three major partners at Argonne National Laboratory’s Center for Electrical Energy Storage.

Now over a year since Kung and company’s method was first described in detail, the technology is making its way into commercial production: A Los Angeles-based startup company called California Lithium Battery in late October 2012 announced that it had achieved a record-setting lithium-ion battery performance in laboratory tests using technology developed in conjunction with Argonne, based on Kung’s work.

“We’re the first to bring [the technology] to the commercial market,” said California Lithium Battery CEO Phil Roberts in a phone interview with TPM.

Specifically, California Lithium Battery reported an increase of 3 times the battery energy capacity — how much charge a battery can store — over standard lithium ion batteries, which are the most common type of battery found in consumer electronics around the globe.

California Lithium’s Battery technology is called GEN3, and it involves extremely precise modifications to the anode portion of a standard lithium-ion battery.

The anode is the one of two electodes found in a battery. It is commonly represented as the negative terminal, but which actually corresponds to the space through which an electrical current flows into the battery cell from outside. The other, opposite electrode, the cathode, is typically where the charge flows out.

GEN3 uses silicon for the anode, where most lithium ion batteries today use graphite. Silicon has a much higher absorption rate of lithium ions, which flow from the cathode to the anode during charging, making silicon a better material to use when building high-capacity batteries. But there’s a problem: Silicon also rapidly deteriorates after just a few charge/discharge cycles, making it unsuitable for any longterm use. Argonne and Northwestern researchers proposed a way around this by inserting porous sheets of graphene — a relatively new, Nobel Prize-winning nano-material that is among the strongest, thinnest and most electrically conductive ever developed — in between silicon nanoparticles, creating a kind of sandwich. Hence the name: silicon graphene.

In a press release, California Lithium Battery stated that it was working to turn its GEN3 silicon graphene anode into a “drop-in” replacement for the current standard graphite anodes used in most lithium-ion batteries, meaning no expensive overhaul to replace a whole battery type, nor a whole new manufacturing form-factor when making new smartphones, tablets, and other consumer electronics. The company said at the time of its release in late October that it hoped to produce and sell the material as full batteries and as replacement anodes in the next two to three years, but Roberts told TPM that the timeline to commercial release could be even more aggressive than that.
More talkingpointsmemo.com

Share

Leave a Reply