A sample text widget

Etiam pulvinar consectetur dolor sed malesuada. Ut convallis euismod dolor nec pretium. Nunc ut tristique massa.

Nam sodales mi vitae dolor ullamcorper et vulputate enim accumsan. Morbi orci magna, tincidunt vitae molestie nec, molestie at mi. Nulla nulla lorem, suscipit in posuere in, interdum non magna.

Fast Charging an EV: AC/DC Questions and Renault’s Answers

When it comes to electricity, AC versus DC is an old battle. It dates back to the 19th century with George Westinghouse against Thomas Edison. Nikola Tesla was involved, and alternating current famously won. Nearly everything today is AC—the grid provides AC electricity and all modern electric cars have AC motors.

Even gas cars switched from DC generators to alternators 50 to 60 years ago. The conflict would be over if there wasn’t a problem: it’s impossible to store AC electricity. A battery can only store DC electricity, so a conversion is needed. AC to DC to charge the battery from the grid; and DC to AC from the battery to the motor to power the car. Fortunately, AC/DC or DC/AC conversion is no big deal. The real issue is how the conversion happens. Let’s look at how the world’s best selling EV is doing it.
Nissan Leaf

Nissan Leaf

The Nissan LEAF has two charging ports. One is designed for standard AC home electricity, the other one for high voltage DC. But the AC/DC distinction is misleading here because a battery can only accept DC. The difference is that with home charging, the charger and the AC/DC converter are fitted inside the car—whereas with fast charging, the charger and the AC/DC converter are outside, in the charging station. So that makes two charging ports, two chargers and two AC/DC converters. Renault has found a smarter way.


Leave a Reply