Categories

A sample text widget

Etiam pulvinar consectetur dolor sed malesuada. Ut convallis euismod dolor nec pretium. Nunc ut tristique massa.

Nam sodales mi vitae dolor ullamcorper et vulputate enim accumsan. Morbi orci magna, tincidunt vitae molestie nec, molestie at mi. Nulla nulla lorem, suscipit in posuere in, interdum non magna.

Researchers Explore Reaction Mechanism of Lithium-Air Battery Using X-Ray Photoelectron Microscopy

Exactly what goes inside advanced lithium-air batteries as they charge and discharge has always been impossible to observe directly. Now, a new technique developed by MIT researchers promises to change that, allowing study of this electrochemical activity as it happens.

A solid-state lithium-air battery (highlighted in orange) is positioned inside a test chamber at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory, in preparation for its testing using X-ray photoelectron microscopy (image courtesy of Eva Mutoro and Ethan Crumlin, ALS)

The research has just been published in the journal Scientific Reports.

The reactions that take place inside a conventional lithium-air battery are complex, says Yang Shao-Horn, the Gail E. Kendall Associate Professor of Mechanical Engineering and Materials Science and Engineering, who was the senior author of the paper. “We focused on finding out what really happens during charging and discharging,” she says. Doing that required the use of a special kind of high-intensity X-ray illumination at one of only two facilities in the world capable of producing such an experiment: the Advanced Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL) in California.

That facility made it possible to study the electrochemical reactions taking place at the surface of electrodes, and to show the reactions between lithium and oxygen as the voltage applied to the cell was changed.

The tests used a novel solid-state version of a lithium-air battery made possible via collaboration with Nancy Dudney and colleagues at Oak Ridge National Laboratory (ORNL), Shao-Horn says. When discharging, such batteries draw in some lithium ions to convert oxygen into lithium peroxide. Using ALS, Yi-Chun Lu, a postdoc in Shao-Horn’s lab, and Ethan Crumlin, who received his doctorate from MIT this year and is now a postdoc at LBNL, were able to produce detailed spectra of how the reaction unfolds, and show that this reaction is reversible on metal oxide surfaces. Lu and Crumlin were the lead authors of the new research paper.

A lack of understanding of how lithium reacts with oxygen has hindered the development of practical lithium-air batteries, the authors say — but this type of battery offers the prospect of storing up to four times as much energy as today’s lithium-ion batteries for a given weight, and so could be a key enabling technology for energy storage, among other uses. Most existing lithium-air batteries suffer from large energy losses during charging and discharging, and have been unable to successfully sustain repeated cycles
More azonano.com

Share

Leave a Reply