A sample text widget

Etiam pulvinar consectetur dolor sed malesuada. Ut convallis euismod dolor nec pretium. Nunc ut tristique massa.

Nam sodales mi vitae dolor ullamcorper et vulputate enim accumsan. Morbi orci magna, tincidunt vitae molestie nec, molestie at mi. Nulla nulla lorem, suscipit in posuere in, interdum non magna.

Self-Charging Battery Generates and Stores Energy Simultaneously

Two things that are becoming increasingly important parts of our clean technology future are improved batteries and mechanical energy harvesting devices, also known as piezoelectric devices, that can generate electricity from our everyday movements. Typically in renewable energy set up, there is the energy generator (whether using mechanical, solar, wind or other sources) and then, ideally, there is the energy storage component, very often a lithium-ion battery. In that scenario the generator turns the renewable energy into electricity and then the battery turns the electricity into chemical energy for storage.

In a new technology breakthrough, researchers at Georgia Tech have developed the first self-charging power cell that is both a mechanical energy harvester and a battery at the same time. Essentially, the device skips the step of generating electricity and converts the mechanical energy directly into chemical energy.

“This is a project that introduces a new approach in battery technology that is fundamentally new in science,” one of the researchers, Zhong Lin Wang, told “This has a general and broad application because it is a unit that not only harvests energy but also stores it. It does not need a constant wall jet DC source to charge the battery. It is mostly to be used for driving small, portable electronics.”

The breakthrough was accomplished by converting a coin-type lithium-ion battery. The team replaced the polyethylene that normally separates the two electrodes with PVDF film. The PVDF acts as a piezoelectric generator when pressure is applied and, because of its position between the two electrodes, the voltage it creates charges the battery.

To test the performance, the researchers put the battery on the heel of a shoe. The pressure of walking provided the compressive energy needed to charge the battery.


Leave a Reply