A sample text widget

Etiam pulvinar consectetur dolor sed malesuada. Ut convallis euismod dolor nec pretium. Nunc ut tristique massa.

Nam sodales mi vitae dolor ullamcorper et vulputate enim accumsan. Morbi orci magna, tincidunt vitae molestie nec, molestie at mi. Nulla nulla lorem, suscipit in posuere in, interdum non magna.

‘Nanoscoop’ Li-ion battery charges over 40 times faster

Scientists have developed a completely new nanomaterial that can offer recharge times for automotive batteries over 40 times faster than previously achievable, as well as opening up possibilities for th swift charging of mobile and laptop batteries.

The new generation of high power lithium (Li)-ion batteries, discovered by Professor Nikhil Koratkar at Rensselaer Polytechnic Institute, are expected to provide extremely high charge and discharge rates that causes the current incarnation of the Li-ion batteries to deteriorate quickly before failing to work at all.

The technology used is the new nanomaterial, dubbed ‘nanoscoop’ due to its resemblance to a scoop of ice cream, featuring a unique material composition, structure and size.

The research team at Rensselaer has successfully demonstrated how a nanoscoop electrode can be charged and discharged between 40 and 60 times faster than that of a conventional battery, managing to maintain this performance over 100 continuous charge cycles, opening the door for new high power, high capacity Li-ion rechargeable batteries.

“Charging my laptop or cell phone in a few minutes, rather than an hour, sounds pretty good to me,” said Koratkar. “By using our nanoscoops as the anode architecture for Li-ion rechargeable batteries, this is a very real prospect. Moreover, this technology could potentially be ramped up to suit the demanding needs of batteries for electric automobiles.”

Electric cars currently use supercapacitors to perform power-intensive functions, including starting the vehicle and rapid acceleration, in conjunction with conventional batteries that deliver high energy density for normal cruise driving and other operations. The researchers believe that nanoscoops may now enable these two separate systems to be combined into a single, more efficient battery unit.

Read more:


Leave a Reply